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ABSTRACT 

Microscopic description in the study of immiscibility and segregating properties of liquid metallic binary alloys 

has gained a renewed scientific and technological interests during the last eight years for the physicists, 

metallurgists and chemists. Especially, in understanding the basic mechanisms, from the point of interionic 
interaction, and how and why segregation in some metallic alloys takes place at and under certain thermodynamic 

state specified by temperature and pressure. An overview of the theoretical and experimental works done by 

different authors or groups in the area of segregation combining electronic theory of metals, statistical mechanics 
and the perturbative approach is presented in this review. Main attention in this review is focused on the static 

effects such as the effects of energy of mixing, enthalpy of mixing, entropy of mixing and understanding the 

critical behavior of segregation of alloys from the microscopic theoretical approach. Investigation of segregating 
properties from the dynamic effects such as from the effects of shear viscosity and diffusion coefficient is just 

becoming available. However, we have restricted this review only on static effects and their variation of impacts 

on different alloys. 

Keywords: Segregation, Thermodynamics of mixing, electronic theory of metals, Critical 

temperature and critical concentration, Perturbative approach.  

1. INTRODUCTION 

Some advancement in understanding the segregating properties, miscibility gap, demixing tendency 

etc. of some metallic binary alloys, has been made, so far, from the empirical models [1-3], and 

phenomenological theories [4,5] in conjunction with arbitrary concepts of association and 

dissociation [6-8]. Experimental data for some liquid segregating alloys [9-20] play the pivotal role 

to arouse the interest in theoretical study, in particular to understand the critical behaviors. This 

knowledge is required to find the possible application of segregating materials to innovate 

technology and to industries for car engines, electrical contacts and switches, separation of 

impurities from the iron melts, ceramic industries, cosmetic and the food industry. 

Known signatures of the existence of immiscibility, segregation, miscibility gap, and critical 

properties of segregating alloys are deviation from Roult’s law, concave downward of the free 

energy of mixing profile [21-25], concave upward of entropy [24,25] and enthalpy of mixing [25], 

large density fluctuation displayed by concentration-concentration structure factors [26], large 

difference in partial coordination numbers [27] derived by using partial pair correlation functions 

gii(r) and g12, sudden sharp bending of the atomic transport properties as a function of concentration 

[25], positivity of short range order parameter [28- 32], exhibiting some sort of scaling laws [25] 

etc. But, understanding of the actual mechanisms involved behind these signatures is a great 

challenge to physicists, metallurgists and the material engineers. 
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Segregating properties of liquid binary alloys may be studied microscopically from the static [21-

24] and dynamic effects [25]. The static effects may be observed from the thermodynamic properties 

of mixing, coordination number derived from structural properties etc. The dynamic effects can be 

seen from the atomic transport properties such as coefficient of viscosity and diffusion coefficient, 

and the electronic transport properties such as electrical resistivity [26]. In this review, a microscopic 

theoretical approach that involves the electronic theory of metals [23,33-35], perturbation theory 

[36,38], the hard sphere reference system [39,40] and the statistical mechanics is employed. Electron 

ion interaction is described by a local pseudopotential, the interionic pair interaction is derived from 

the energy band structure which is finally employed to evaluate static structure of liquid metals and 

their alloys. Specifically, the form factors of the pseudopotential is used to find the effective pair 

potentials and the volume dependent contribution to the free energy. The knowledge of pair 

potentials is essential to have pair correlation functions, the energy of the reference system and that 

of the attractive tail [33,37]. 

There are many liquid metallic binary alloys which exhibit miscibility gap or segregation at certain 

thermodynamic state. Some of these alloys are Li-Na, Al-In, Al-Pb, Al-Bi, Zn-Bi, Bi-Ga, Ga-Pb, 

Ga-Hg, Pb-Sn, Fe-Cu, Co-Cu, Cu- Pb etc. Of them, only a few systems such as Al-In, Al-Bi, Zn-Bi, 

Fe-Cu, Co-Cu are systematically studied employing microscopic theory, of course, empirical or 

phenomenological theories are applied to study some other systems [26]. For Al-In, Al-Bi, Zn-Bi, 

Fe-Cu, Co-Cu liquid binary alloys break down details are available (see below), from which one can 

analyze which component of the interionic interaction contributes how much or dominates in making 

the segregation to happen. Finally, comparison of these results with the experimental data would 

help understand the origin of segregation from the microscopic point of view and also the limitations 

of the employed theoretical approaches. Very little efforts have been spent so far in the study of 

immiscibility or segregating behavior of liquid metallic alloys from the effects of dynamic properties 

when it is compared with that of the static effects. So, it demands further to have considerably more 

studies in this direction. For this purpose, the easiest way is to invoke the Rice-Allnatt theory for 

atomic transport properties. Because, analytic expressions for shear viscosity and diffusion 

coefficient are already available for elemental [41,42] and binary alloys [43]. 

The layout of this review is as follows. Relevant theories are briefly discussed in section 2. Section 

3 is devoted to the results obtained from the empirical and phenomenological theories. Results for 

the segregating properties for different alloys calculated from the microscopic theories are presented 

in section 4. A brief comparison of the impacts of the interionic interactions on different alloy 

systems is done and analyzed in the concluding section 5. 

2. THEORY 

Different theories relevant to the present review article are briefly presented below. 

2.1 Thermodynamic relations involved 

A macrostate of a condensed system may be described by four independent variables. These are 

pressure, p, volume, V, temperature, T, and entropy, S. Here, p and V form a pair representing the 

mechanical degrees of freedom, and T and S form another pair representing the thermal degrees of 

freedom. Any two of the four variables may be chosen in six different ways. Of them four pair of 

variables are (p,T), (p,s), (V,T) and (V,S), each of which contains one variable from the mechanical 

and another from the thermal degrees of freedom. Thermodynamic functions constructed by these 
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pairs are Gibbs free energy, G(p,T), enthalpy, H(p,S), Helmholtz free energy, F(V,T), and the 

internal energy, E(V,S). 

The free energy in thermodynamics is the amount of energy of the system free to work. Internal 

energy of a system is the sum of kinetic energy, potential energy, rotational energy and the 

vibrational energy etc. Of course, in the magnetic systems the magnetic energy [44,45] and for a 

finite sized sample the surface energy correction to be counted in the above functions [46]. For a 

monoatomic system (also in random binary alloys) there are no rotational and vibrational energy 

contribution in general. However, the above thermodynamic functions are not independent to each 

other. They are rather interconnected. The Helmholtz free energy (for the bulk) is (dropping the 

variables for brevity) 

F = E − TS. (1) 

The Gibbs free energy 

G = F + pV = E − TS + pV. (2) 

The enthalpy 

H = E + pV. (3) 

And the change in the internal energy 

dE = TdS − pdV. (4) 

From the theoretical point of view, we can further analyze the above relations, for example, for 

zero pressure, i.e., at p = 0, 

G =   F (5) 

H =   E. (6) 

Again, most of the experimental data for thermodynamic quantities available in the literature are at 

standard temperature and pressure. In one 

atmospheric pressure the value of the product of pV appears to be very small when compared with 

other terms of the above thermodynamic functions. So, in one or two atmospheric pressure or less 

one can write 

H ≈ E ; G ≈ F . (7) 

We note here that other physical quantities such as heat capacity, compressibility etc. can be derived 

from equations (1) to (3) [47-49]. 

For binary alloys the free energy of mixing is 

Δ𝐹 = 𝐹alloy − ∑  

𝑎

𝐶𝑎𝐹𝑎                                                                                                   (8) 

where 𝐹alloy  is the free energy of the alloy, 𝐶𝑎 is the concentration of the 𝑎-th component and, 𝐹𝑎 is 

the free energy of the 𝑎-th element in the same thermodynamic state. Similarly, the enthalpy of 

mixing may be expressed as 
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Δ𝐻 = 𝐻alloy − ∑  

𝑎

𝐶𝑎𝐻𝑎                                                                                                     (9) 

and the entropy of mixing as 

Δ𝑆 = 𝑆alloy − ∑  

𝑎

𝐶𝑎𝑆𝑎                                                                                                  (10) 

It is worth noting that, the thermodynamics is a phenomenological subject because all relations in 

thermodynamics are obtained just looking at the experimental results. The only way to have 

microscopic description of the thermodynamic quantities is through the statistical mechanics 

[48,49]. 

3. MICROSCOPIC THEORY FOR METALLIC SYSTEMS 

3.1 The pair correlation function 

Let us consider 𝑁 ions each of valence 𝑍 are there in a volume 𝑉 in a liquid metallic system. So, the 

total number of conduction electrons in this system is 𝑁𝑍. The Hamiltonian of the sample may be 

written as 

𝐻 = 𝐻𝑒 + 𝐻𝑒𝑒 + 𝐻𝑒𝑖 + 𝐻𝑖 + 𝐻𝑖𝑖

=  ∑  

𝑁𝑍

𝑖=1

 
𝑝𝑖

2

2𝑀
+

𝑒2

2
∑  

𝑁𝑍

𝑖≠𝑗

 
1

|𝑅⃗ 𝑖 − 𝑅⃗ 𝑗|
+ ∑  

𝑖,𝑙

 𝑣(∣ 𝑅⃗ 𝑖 − 𝑟 𝑙)

 +∑  

𝑁

𝑙=1

 
𝑃𝑙

2

2𝑚
+

1

2
∑  

𝑁

𝑙≠𝑙′

 𝑤(|𝑟 𝑙 − 𝑟 𝑙
′|)                                                                         (11)

 

where 𝐻𝑒 , 𝐻𝑒𝑒 , 𝐻𝑒𝑖 , 𝐻𝑖 , and 𝐻𝑖𝑖  denote contributions from kinetic energy of electrons, electron-

electron interactions, electron-ion interactions, kinetic energy of ions and ion-ion interactions, 

respectively. In equation (11) {𝑅𝑖}  and {𝑟𝑙}  are electronic and ionic coordination; {𝑝𝑖}  and {𝑃𝑙} 
electronic and ionic momenta, and, 𝑀 and 𝑚 are corresponding masses. 𝑣 and 𝑤 denote electron-

ion and ion-ion potential energies, respectively. 

In the canonical ensemble theory, the normalized equilibrium probability density 𝑓0
(𝑁)

 for a system 

of homonuclear atoms is given by 

𝑓0
(𝑁)(𝑟 1, ⋯ , 𝑟 𝑁 , 𝑝 1, ⋯ , 𝑝 𝑁) =

exp [−𝛽𝐻(𝑟 1, ⋯ , 𝑟 𝑁 , 𝑝 1, ⋯ , 𝑝 𝑁)]

𝑁! ℎ3𝑁𝑄𝑁(𝑉, 𝑇)
                                     (12) 

where ℎ denotes Planck's constant, and 𝑄𝑁(𝑉, 𝑇) the total partition function, 

𝑄𝑁(𝑉, 𝑇)  = Tr 𝑒−𝛽𝐻

 =
1

𝑁! ℎ3𝑁
∫  𝑑𝑟 1 ⋯𝑑𝑟 𝑁 ∫  𝑑𝑝 1 ⋯𝑑𝑝 𝑁Tr𝑒𝑒

−𝛽𝐻
                                        (13) 

where Tr𝑒  refers complete set of electronic states corresponding to a particular ionic configuration. 

The motion of ions is very slow relative to the conduction electrons, so, ions can be treated 

classically unlike electrons that must be handled quantum mechanically. As classical particle do not 
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obey uncertainty principle one can integrate over position and momentum independently. The result 

thus obtained is 

𝑄𝑁(𝑉, 𝑇) =
1

𝑁!
[
2𝜋𝑚

ħ2𝛽
]

3𝑁
2

𝑍𝑁(𝑉, 𝑇)                                                                               (14) 

where the configurational partition function 

𝑍𝑁(𝑉, 𝑇) = ∫  ⋯∫  𝑑𝑟 1 ⋯𝑑𝑟 𝑁exp (−𝛽𝐻𝑖𝑖) {∫  ⋯∫  𝑑𝑅⃗ 1 ⋯𝑑𝑅⃗ 𝑁

𝑑𝑃⃗ 1 ⋯𝑑𝑃⃗ 𝑁𝑒−𝛽(𝐻𝑒+𝐻𝑐𝑒+𝐻𝑒𝑖)}

                             (15) 

Ions move in the following effective pair potential 

𝑈𝑁 = 𝐻𝑖𝑖 + 𝐹′                                 (16) 

where 𝐹′ is the Helmholtz free energy of the conduction electrons in the external potential 𝐻ei . 𝐹
′ 

can be calculated by some approximation schemes. Therefore 

𝑍𝑁 = ∫  𝑑𝑟 1𝑑𝑟 2 ⋯𝑑𝑟 𝑁𝑒−𝛽𝑈𝑁                                                                                            (17) 

and the L-body probability density 

𝑛𝑁
(𝐿)

=
∫  ⋯∫  𝑑𝑟 𝐿+1𝑑𝑟 𝐿+2 ⋯𝑑𝑟 𝑁𝑒−𝛽𝑈𝑁

𝑍𝑁

                                                                          (18) 

This is related to the 𝐿-particle distribution function defined as 

𝑔(𝐿)(𝑟 1𝑟 2 ⋯𝑟 𝑁)  ≡
𝑛𝑁

(𝐿)

𝑛𝐿

 =
𝑁!

𝑛𝐿(𝑛 − 𝐿)!

∫  ⋯∫  𝑑𝑟 𝐿+1 ⋯𝑑𝑟 𝑁𝑒−𝛽𝑈𝑁

𝑍𝑁

                                          (19) 

Now, the two-body reduced distribution function stands as 

𝑔(2)(𝑟 1, 𝑟 2) =
𝑁(𝑁 − 1)

𝑛2

∫  ⋯∫  𝑑𝑟 3 ⋯𝑑𝑟 𝑁𝑒−𝛽𝑈𝑁

𝑍𝑁

                                                         (20) 

For an isotropic liquid 

𝑔(2)(𝑟 1, 𝑟 2) = 𝑔(|𝑟 2 − 𝑟 2|) = 𝑔(𝑟) 

which is also known as pair correlation function and is the central idea in most liquid state theories. 

Now if it is assumed that the effective interionic potential is pairwise additive in the following way 

𝑈𝑁 = 𝑁𝐸(𝑉) +
1

2
∑  

𝑖,𝑗

𝑣(𝑟𝑖𝑗)                                                                                                 (21) 

where 𝐸(𝑉) is the volume dependent (but structure independent) part of energy that includes the 

free energy of electrons, then all thermodynamic functions can be expressed in terms of 𝑔(𝑟) and 
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the pairpotential of interaction. We note here that equation (20) cannot be solved analytically even 

if Eqn. (21) is used. For this mathematical limitation different approximation methods and computer 

simulation methods are devised to solve for 𝑔(𝑟). But for the hard sphere (HS) potential 

𝑣ℎ𝑠(𝑟) = {
∞  for 𝑟 < 𝜎
0  for 𝑟 > 𝜎

                                                                                                   (22) 

𝑔(𝑟) can be evaluated analytically [33,40], here 𝜎 denotes the hard sphere diameter (HSD). The 

pair correlation function for a liquid binary alloy [50] may be expressed as 

𝑔𝑖𝑗(𝑟) = 1 +
1

(2𝜋)3𝜌√𝐶𝑖𝐶𝑗

∫  (𝑆𝑖𝑗(𝑞) − 𝛿𝑖𝑗)𝑒
𝑖𝑞⃗ ⋅𝑟 𝑑3𝑟                                                     (23) 

where 𝑆𝑖𝑗(𝑞) is the static structure factors and 𝑞 the momentum transfer. 

𝟑. 𝟐 Thermodynamic perturbation theory 

The thermodynamic perturbation theory proposed by Weeks-Chandler-Andersen (WCA) [51] splits 

the interionic potential as core and tails terms 

𝑣(𝑟)
= 𝑣core (𝑟) + 𝑣tail (𝑟)                                                                                                        (24) 

The core term is related to the HS potential, 𝑣ℎ𝑠  through the Mayer's cluster expansion in the 

following way. 

𝑓𝜇(𝑟) = 𝑓ℎ𝑠(𝑟) + 𝜇Δ𝑓(𝑟)  for  0 ≤ 𝜇 ≤ 1                                                                            (25) 

where 𝜇 is the coupling parameter, and 

Δ𝑓(𝑟) = 𝑓core (𝑟) − 𝑓ℎ𝑠 = [𝑒−𝛽𝑣core − 𝑒−𝛽𝑣ℎ𝑠]                                                                   (26) 

The Helmholtz free energy can be expanded now as 

𝐹core = 𝐹ℎ𝑠 + 𝐸(𝑉) −
1

2
𝑘𝑇𝜌𝜎𝜉 + 𝒪(𝜉4)                                                                              (27) 

where 

𝜉 =
1

𝜎
∫  

∞

0

𝐵ℎ𝑠(𝑟)𝑑𝑟                                                                                                                   (28) 

with the blip function 

𝐵(𝑟) = 𝑦𝜎(𝑟){𝑒−𝛽𝑣core (𝑟) − 𝑒−𝛽𝑣ℎ𝑠(𝑟)}.                                                                                (29) 
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Figure 1: Splitting of the effective pair potential into hard and soft parts. 

From equation (27) it is clear that, when 𝜉 = 0, 𝐹core = 𝐹ℎ𝑠 + 𝐸(𝑉). In the WCA theory hard sphere 

diameter 𝜎  is determined following this condition that Fourier transform of 𝐵(𝑟)  that is 𝐵(𝑞) 

vanishes at 𝑟 = 𝜎. But in WCA theory 𝑟2𝐵(𝑟) shows a saw tooth shaped function. If this function 

is linearzed to have a triangular form one can find an equation [52] 

𝛽𝑣(𝜎) = ln (
−2𝛽𝑣′(𝜎) + 𝑋 + 2

−𝛽𝑣′(𝜎) + 𝑋 + 2
) ,                                                                                      (30) 

here, prime indicates the first derivative of the potential energy at 𝑟 = 𝜎, and 

𝑋 =
𝜎/𝜎𝑤

𝑔0

[∑  

𝑘=0

 
𝜉𝑘+1(𝜂𝑤)

𝑛!
(

𝜎

𝜎𝑤

− 1)
𝑛

−
𝐴𝜎𝑤

𝜎2
(1 + 𝜇𝜎)]                                                   (31) 

All symbols are defined in reference [52]. Solution of the transcendental equation (30) yields the 

effective HSD. The pair correlation function is now evaluated using this effective HSD. 

Andersen et al. [53] proposed a simplest version of the perturbative scheme 

known as exponential approximation, 

ghs(r) = g e-v(r)/kT 

where v(r) is the real short-range part of the potential; in the present case it is vcore. We note that this 

optimized form gives more realistic description of the pair correlation function. 

Now using the perturbation theory one can calculate the free energy of a system per ion as 

𝐹 = 𝐹𝑢𝑛𝑝 + 2𝜋𝜌 ∫  𝑣𝑝𝑒𝑟𝑡𝑔ℎ𝑠𝑑
3𝑟                                                                                           (32) 

where 

𝐹𝑢𝑛𝑝 = 𝐸(𝑉) + 𝐹ℎ𝑠 = 𝐹𝑣𝑜𝑙 + 𝐹𝑔𝑎𝑠 + 𝐹ℎ𝑠 

and 
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𝑣pert = 𝑣tail 

𝐹vol =
1

32𝜋3
∫  

∞

0

 𝑞4 {
1

𝜖(𝑞)
− 1} |𝑣(𝑞)|2𝑑𝑞 −

𝑍𝐸𝐹

3𝑌
                                                             (33) 

where 𝑍 = 𝐶1𝑍1 + 𝐶2𝑍2  𝑌 = 𝜒elec /𝜒𝐹, subscripts elec and 𝐹 denote isothermal compressibilty of 

the interacting and free electrons, respectively. The values of 𝑌 are obtained from [54]. 

The electron gas contribution to the free energy per valence in Rydberg unit is 

𝐹𝑔𝑎𝑠 =
2.21

𝑟𝑠
2

−
0.916

𝑟𝑠
+ 0.31ln 𝑟𝑠 − 0.115                                                                          (34) 

where 

𝑟𝑠  = (
3

4𝜋𝜌𝑍
)

1
3
/𝑎0;  𝜌 =

𝜌1𝜌2

𝐶1𝜌2 + 𝐶2𝜌1

𝐹ℎ𝑠 =  ∑  

𝑖

  [−ln (Λ𝑖
3𝑣) + ln 𝐶𝑖] −

2

3
(
5

3
− 𝑦1 + 𝑦2 + 𝑦3)

 +(3𝑦2 − 2𝑦3)/(1 − 𝜂) +
3

2
(1 − 𝑦1 − 𝑦2 −

𝑦3

3
) /(1 − 𝜂)2

 +(𝑦3 − 1)ln (1 − 𝜂)

                            (35) 

where 

Λ𝑖 = {
2𝜋ħ2

𝑚1
𝐶1𝑚2

𝐶2𝑘𝑇
}

1
2

𝜂 = ∑  

𝑖

 𝜂𝑖;  𝜂𝑖 =
𝐶𝑖𝜋𝜌𝑖𝜎𝑖𝑖

3

6

𝐹tail = 𝐷 ∑  

𝑖,𝑗

 𝐶𝑖𝐶𝑗𝑀𝑖𝑗

 

𝐷 = 2𝜋𝜌, 

𝑀𝑖𝑗 = ∫  
∞

𝜎

𝑣𝑖𝑗𝑔𝑖𝑗(𝑟)𝑟
2𝑑𝑟 

Now, the energy of mixing 

Δ𝐹 = Δ𝐹𝑣𝑜𝑙 + Δ𝐹gas + Δ𝐹ℎ𝑠 + Δ𝐹tail                                                                                     (36) 

Δ𝐹𝑦 to be calculated by using equation (8). Now if the experimental densities of the alloy at different 

concentrations are available, and if the difference between calculated density and the experimental 

ones exists and significant an excess volume correction to be added with the thermodynamics of 

mixing as [34] 

Δ𝐹 = Δ𝐹𝑣𝑜𝑙 + Δ𝐹gas + Δ𝐹ℎ𝑠 + Δ𝐹tail + Δ𝐹evc .                                                                    (37) 

 



MICROSCOPIC ORIGIN OF IMMISCIBILITY AND SEGREGATION ... 9  

Enthalpy of alloy: 

Enthalpy of the alloy per ion 

𝐻  = 𝐸 + 𝑝𝑉

 =
3

2
𝑘𝑇 + 𝐸(𝑉) +

𝜌

2
∑  

2

𝑖=1

 ∫  𝑔𝑖𝑗(𝑟)𝑣𝑖𝑗(𝑟)𝑑
3𝑟 + 𝑝𝑉                                                 (38)

 

Entropy of alloy: 

Within the above perturbation scheme the entropy of alloy (divided by 𝑁𝑘 ) reads [38] 

𝑆 = 𝑆ref + 𝑆tail 

𝑆ref = 𝑆𝑖𝑑 + 𝑆gas + 𝑆𝜂 + 𝑆𝜎

𝑆𝑖𝑑 =  −[𝐶1ln 𝐶1 + 𝐶2ln 𝐶2]

𝑆gas =
5

2
ln [

1

𝜌
(
𝑚1

𝐶1𝑚2
𝐶2𝑘𝑇

2𝜋ħ2
)

3
2

]

𝑆𝜂 = ln (1 − 𝜂) +
3

2
[1 − (1 − 𝜂)−2]

𝑆𝜎 = [
𝜋𝐶1𝐶2𝜌(𝜎11

2 − 𝜎22
2 )(1 − 𝜂)−2

24
]

 × {12(𝜎11 + 𝜎22) − 𝜋𝜌[𝐶1𝜎11
4 + 𝐶2𝜎22

4 ]}

                                                         (39) 

and 

𝑆tail =
1

𝑘
[(

∂𝐹tail 

∂𝑇
)
𝑉,𝜌,𝜎𝑖𝑖

+ ∑  

2

𝑖=1

  (
∂𝐹tail 

∂𝜎𝑖𝑖

)
𝑉,𝑇

(
∂𝜎𝑖𝑖

∂𝑇
)
𝑉,𝜌

]                                                        (40) 

The temperature dependent HSD as proposed by Protopapas et al. [ 55] is 

𝜎(𝑇) = 1.126𝜎𝑚 {1 − 0.112 (
𝑇

𝑇𝑚

)

1
2
} .                                                                               (41) 

Entropy of mixing therefore stands 

Δ𝑆 = Δ𝑆ref + Δ𝑆tail                                                                                                                    (42) 

An alternative way may also be used to evaluate entropy of mixing 

Δ𝑆 =
Δ𝐻 − Δ𝐹

𝑇
                                                                                                                          (43) 

 

3.3 The pseudopotential model 

The effective electron-ion interaction between a conduction electron and an ion may be written as 

(in atomic unit) [56] 
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𝑤(𝑟) = {
∑  

2

𝑚=1

 𝐵𝑚exp (−𝑟/𝑚𝑎)  if 𝑟 < 𝑅𝑐

−𝑍/𝑟  if 𝑟 > 𝑅𝑐

                                                                     (44) 

where 𝑍, 𝑅𝑐  and 𝑎 are the effective 𝑠 -electron occupancy number, core radius and, the softness 

parameter, respectively. 𝐵𝑚 is the coefficient of expansion which is independent of 𝑟 but depends 

explicitly on parameters 𝑍, 𝑅𝑐 and a. The pseudopotential theory leads to an expression for effective 

interionic potential of an alloy through the energy band structure [33,36], 

𝑣𝑖𝑗(𝑟) =
𝑍𝑖𝑍𝑗

𝑟
[1 −

2

𝜋
∫  𝑑𝑞𝐹𝑖𝑗

(𝑁) sin 𝑞𝑟

𝑞
]                                                                               (45) 

where the wave number characteristics 

𝐹𝑖𝑗
(𝑁)

= [
𝑞2

8𝜋𝜌√𝑍𝑖𝑍𝑗

]

2

𝑤𝑖(𝑞)𝑤𝑗(𝑞) [1 −
1

𝜖(𝑞)
] [1 − 𝐺(𝑞)]−1                                           (46) 

3.4 Noticeable beckon and phenomenological theory of segregation 

For a condensed state one of the most basic ingredients from which any microscopic description 

begins is the subatomic interaction or interionic interaction derived from the former one. This 

interaction dictates if the alloy would be an ordered or a segregating type. In ordered alloy, the unlike 

atoms are preferred as nearest neighbors to like atoms, whereas in segregating alloys like atoms are 

preferred as nearest neighbors to unlike atoms. But direct identification of like and unlike atoms in 

the sample is very difficult to achieve experimentally. Indirect ways through some probes assigned 

with interionic interactions, for example, structural data, thermodynamics of mixing (viz. energy of 

mixing, enthalpy of mixing, entropy of mixing), atomic transport properties (viz. coefficient of shear 

viscosity, diffusion coefficient) and electronic transport properties (viz. resistivity) provide good 

alternative ways. Some of the microscopic parameters used in identifying segregating alloys are 

(i) downward concavity or positivity of the free energy of mixing vs concentration profile at any or 

some concentrations, 

(ii) upward concavity or negativity of the enthalpy of mixing profile at any or some concentrations, 

(iii) upward concavity or negativity of the entropy of mixing profile at any or some concentrations, 

(iv) order potential 𝑣ord = 𝑣𝑖𝑗(𝑟) −
𝑣𝑖𝑖+𝑣𝑗𝑗

2
> 0 around the nearest neighbour distance, 

(v) a strong bending of the viscosity vs concentration curve near the critical concentration at and 

below the critical temperature. 

In the phenomenological theories or empirical methods [26] there are some other parameters also 

to identify the segregation of alloys, for example, 

(i) the Warren-Cowly short range order parameter 𝛼 > 0, 

(ii) in the regular solution theory, the exchange energy 𝑤 > 0, 

(iii) the concentration-concentration structure factors in the long wavelength limit 𝑆𝑐𝑐(0) diverges 

near the critical temperature and, the sharp increase happens around the critical concentration.  
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Some alloys such as Li − Na, Al − Bi, Al − Sn, Fe − Cu, Cu − Co, Al − Pb, Bi − Zn, Cd − Ga, Ga-

Pb, Ga-Hg, Pb-Zn, Pb-Si, and Cu-Pb are well known systems for which some segregating properties 

are measured. So, it is worth pursuing to understand the microscopic origin of segregation from the 

theoretical point of view and compare them with the experimental ones. 

3.5 Phenomenological theories in the study of segregating properties 

The Gibbs free energy of mixing (of a sample of 𝑁 moles) for binary alloys is 

Δ𝐺 = 𝐺alloy − ∑  

2

𝑖=1

𝐶𝑖𝐺𝑖 .                                                                                                         (47) 

In terms of the partial Gibbs energies Δ𝐺𝑖, one can write 

Δ𝐺 = 𝐶𝑖Δ𝐺𝑖 + 𝐶𝑗Δ𝐺𝑗 ,                                                                                                              (48) 

with 

Δ𝐺𝑖 = 𝑅𝑇 ln 𝑎𝑖                    (𝑖 = 1,2) 

where 𝑎𝑖 denotes the thermodynamic activity of the 𝑖 -th component.  

The stability of a binary mixture is mostly determined by Δ𝐺 . Figure 2(𝑖) shows a schematic 

diagram for Δ𝐺 denoted by 𝐺𝑀 as a function of concentration 𝐶. Here curve 𝑎 describes a miscible 

stable state whereas curve 𝑏 describes an immiscible unstable state in the concentration range Δ𝐶. 

The points P and Q in Figure 2(𝑖) give compositions of two segregated phases. At points 𝑃 and 𝑄 

the partial Gibbs energies of the components are equal, 

Δ𝐺𝑖(𝐶1) = Δ𝐺𝑖(𝐶2) (𝑖 = 𝐴, 𝐵). 

The point of inflexion in the curve b  for 𝑇2 < 𝑇𝑐  represents the spinodal line. The critical 

concentration and critical temperature follow from the following conditions 

(
∂2Δ𝐺

∂𝐶2
)

𝐶=𝑥𝑐

= 0;  (
∂3Δ𝐺

∂𝐶3
)

𝐶=𝑥𝑐

= 0 

at 𝑇 = 𝑇𝑐 . Following the Bhatia-Thronton structure factors [57] , which is well known for the 

concentration-concentration fluctuation in the long wave length limit, one can show 

𝑆𝐶𝐶(0) = 𝑅𝑇 (
∂2𝐺𝑚

∂𝐶2
)

𝑇,𝑝

−1

. 

As 

𝐶 ⟶ 𝑥𝑐 ,   and  𝑇 ⟶ 𝑇𝐶 ,  𝑆𝐶𝐶(0) ⟶ ∞ 

This property of 𝑆𝐶𝐶(0) ⟶ ∞ signals the phase separation in a binary mixture. Figure 2(𝑖𝑖) shows 

this behaviour. Other empirical models used 
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(i)  (ii)  

Figure 2: (i) A schematic diagram of Gibbs free energy of mixing as a function of concentration and 

(ii) SCC(0) for different temperatures (after Singh and Sommer [26]). 

 

Table 1: Critical concentration and critical for demixing liquid alloys. 

Systems     

A𝑚 − B𝑛 m n xc,A 𝑤

𝑘𝑇𝑐

 

A-B 1 1 0.5 2.0 

A2-B2 2 2 0.5 1.0 

A4-B4 4 4 0.5 0.5 

A-B2 1 2 0.74 1.457 

A2-B4 2 4 0.74 0.728 

A-B3 1 3 0.84 1.244 

A2-B8 2 8 0.89 0.562 

in the study of demixing of alloys are quasi-lattice theory [7,26] and the self association model [58]. 
Using the quasi-lattice theory [7,26] it is possible to derive the configurational energy and partition 

function of the alloy. This knowledge later yields an expression for the Gibbs free energy of mixing 

and thermodynamic activity in terms of a free parameter known as interchange energy. The critical 

properties of segregation can then be obtained from the so-called stability conditions 

∂ln 𝑎𝑖

∂𝐶𝑖

= 0;  
∂2ln 𝑎𝑖

∂𝐶𝑖
2 = 0 

for different clusters suggested by the self-association model. 

Although this empirical theory presents a good prescription to study the critical properties of 

segregating alloys, its reliability in predicting critical properties of real binary alloys is yet to be 

seen. 
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4. RESULTS FROM THE MICROSCOPIC APPROACH 

4.1 Partial pair potentials and corresponding pair correlation functions 

For any microscopic description of a condensed matter the most fundamental ingredient necessary 

is the knowledge of interionic potential. Direct derivation and application of the N -body potentials 

to the study of the physical properties of condensed matter is a too much difficult job to handle 

theoretically. In order to avoid this difficult situation, one goes for the effective pair potentials. The 

term effective indicates that, these potentials take into account the many body effects in an average 

way following indirect routes. Figure 3 shows the profile of the effective partial pair potentials for 

an Al-based alloy namely AlxIn1−x. It is seen that partial pair potential vAlAl(r) has the sallowest 

potential well and vInIn the deepest well. That of vAlIn lies in between. It is also seen that the position 

of the well minima for vAlIn and vInIn shift to large r relative to vAlAl. Similar feature is also observed 

for transition metal segregation alloys (for example Fex Cu1−x, Cux Co1−x). In case of ZnxBi1−x the 

amount of shift among different partial pair potentials is significantly small. This shifting is largely 

associated with the difference in the values of the core radii between individual components of the 

alloy. We note here that in random alloys v12 generally lies between v11 and v22. But in the case of 

compound forming alloys v12 goes down the well of the v11 or v22 whichever has lower value. We 

note that in the effective pair potential calculations Ichimaru-Utshumi dielectric function [59] has 

been used by Bhuiyan and his group because this function satisfies both compressibility sum rule 

and the short range correlation function. The BS pseudopotential model has proven to be successful 

in the studies of liquid structure [60-63], thermodynamic properties [34,35,64,65], atomic transport 

[66-70] and electronic transport properties [71,72] of liquid metals and there alloys. 

 

Figure 3: Partial pair potentials for AlxIn1−x, CuxAl1−x and BixZn1−x liquid binary alloys For x = 0.5 (after (from 

the left) Bhuiyan and coworkers [21, 22, 24] ). 

 

Figure 4: Partial pair potentials for BixZn1−x liquid binary alloys for x =0.1, x =0.5, x =0.9, respectively (after 

Kasem et al. [24]). 
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The partial pair correlation function, g(r), is related to the partial interionic pair potential through 

the statistical mechanics [73] (see equation (7)). Partial pair correlation functions for three different 

concentrations are presented in figure 4. In the alloys, rich in component 1, g11 exhibits the largest 

peak, while the trends become opposite in alloys rich in component 2; that is g22 shows the largest 

main peak. But in both cases peak value of g12 remains in the middle of g11(r) and g22(r). The physical 

significance of g(r) is that, it gives a measure of the probability of finding the number of nearest 

neighbors at a distance of the peak from the ion located at the origin. Thus, the area under the 

principal oscillation provides the coordination number, a characteristic feature of the condensed 

matter. Advantage of it is that, g(r) can also be derived from the X-ray or neutron diffraction data 

through the Fourier transformation, and directly from the computer simulation experiment. In the 

theoretical study of liquid metals, it plays the central role in describing thermodynamic properties. 

4.2 Energy of mixing 

The free energy of mixing and its effects on the critical properties of segregation are described for 

different alloys below. 

(a) LixNa1−x liquid binary alloys: 

The first attempt to estimate the energy of mixing theoretically for Li1−xNax liquid binary alloys from 

a microscopic approach was made by Tamaki [74]. He also attempted to relate effective pair 

potential between ions with the im- miscibility of the segregating alloys (see Figure 5(a)). He was 

Stroud who made an attempt systematically for the first time to understand the segregating properties 

such as critical concentration xc and critical temperature Tc of Li1−xNax liquid binary alloys using a 

microscopic theoretical approach [23]. He employed there the electronic theory of metal based on 

the empty core model [75], statistical mechanics and the Gibbs-Bogoliubov variational scheme [76] 

in order to calculate the free energy of mixing. Figure 5(b) shows a schematic diagram, presented 

by Stroud in [23], for the ∆F as a function of concentration for different temperatures. For T > Tc 

the energy of mixing profile is concave upward for all concentrations, which manifests complete 

miscibility (i.e., alloy is stable against segregation) at any concentration. But for T < Tc the profile 

becomes concave downward at some concentrations which indicates segregation of the alloy. The 

temperature at which spinodal points P and Q coincides is called the critical temperature Tc, and the 

concentration at which it happens is called the critical concentration xc. Here, in the calculation the 

Hubbard type dielectric function [77] is used. The critical concentration for LixNa1−x segregating 

alloy was found to be xc =0.7, but the predicted critical temperature was overestimated by one third 

[23]. 

Table 2: Potential parameters and densities used for elements that formed different alloys under 

study are listed. 

Elements ρ (˚A−3) Rc (au) a (au) Z 

     

Al 0.0517 1.91 0.30 3.0 

In 0.0342 1.32 0.29 3.0 

Bi 0.0289 1.49 0.36 (0.35) 3 (5) 

Fe 0.0756 1.425 0.33 1.5 

Co 0.0787 1.325 0.27 1.5 

Cu 0.0760 1.510 0.44 1.5 
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(a)                (b)  

Figure 5: Energy of mixing as a function of x for LixNa1−x liquid binary alloys (after (a) Tamaki [72], (b) Stroud 

[20]) 

(b) AlxIn1−x liquid binary alloys: 

This AlxIn1−x alloy is formed by the elemental metals Al and In. These elements belong to the less 

simple polyvalent metals. Al based alloys are known to be good candidates for a new advanced anti-

friction material. The input values such as potential parameters Rc, a and Z along with number 

density, ρ, for Al and In, and also for some other elements are shown in Table 2. 

(a)                 (b)  

Figure 6: Energy of mixing as a function of x for AlxIn1−x liquid binary alloys (a) breakdown details at T=1173 

K, (b) Temperature dependence (after Faruk and Bhuiyan [21]). 

Faruk and Bhuiyan [21] studied the segregating properties of AlxIn1−x liquid binary alloys by using 

the electronic theory of metals (first principal calculations) along with the statistical mechanics and 

perturbative approach. Initially, they justified the appropriateness of the potential parameters by 

calculating static structure factors of the elemental liquids at a thermodynamic state at which 

experimental data are available [78]. Figure 6(a) shows the breakdown details of energy of mixing, 

∆F, at T = 1173 K. It is noticed that the HS contribution to the energy of mixing is negative and 

values are the lowest among all other contributions across the whole range of concentrations. The 

tail part contribution is also negative across the concentration range and values are the second lowest 

among all others. Contribution of the electron gas, ∆Feg, is positive for the full concentration range 

and values are very close to zero. The volume dependent (i.e., structure independent) part of the 

energy of mixing, ∆Fvol, due to electron ion interaction is positive and large across the full range of 
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concentration. The combined effect of all contributions, ∆F, agree well with the corresponding 

experimental data [79]. This signifies the accuracy of the approach for the study of energy of mixing 

at different temperatures. 

The temperature dependent energy of mixing for AlxIn1−x liquid binary alloys for different 

concentrations are illustrated in figure 6(b). As temperature is decreased from 1173 K, ∆F increases 

gradually and at 1155 K becomes partially positive and partially negative. Further lowering of 

temperature increase the miscibility gap and at 1140 K the concentration gap span the whole range 

of concentration. A careful observation finds the first downward concavity or positivity of ∆F at 

1160 K, and the concentration at which it happens is x = 0.5. So, the predicted critical temperature 

and concentration for AlxIn1−x segregating alloys are Tc = 1160 K and xc = 0.5, respectively. The 

experimental work by Campbell et al. [80], and Campbell and Wagemann [9] report a critical 

temperature of 1220 K. whereas Predel [1] reports 1100 K for xIn1−x liquid binary alloys. Differential 

thermal analysis by Sommer et al. [81] re- ports Tc = 1112 K. The average of these scattered 

experimental data is 1144 K which is close to the theoretical prediction of Faruk and Bhuiyan [21]. 

The experimental critical concentration [10,1] is xc = 0.5 which is exactly the same as that of 

theoretical prediction [21]. But the experimental data reported in [9] is 0.34 which largely deviates 

from 0.5. 

(c) BixAl1−x liquid binary alloys: 

BixAl1−x liquid binary alloy is formed by two elements Al and Bi which belong to group IIIB and 

VB in the periodic table, respectively. The melting points of Al and Bi are 933 and 544 K, 

respectively; the corresponding densities are 2.375 and 9.78 gm cm−3. Al is a trivalent and Bi is a 

pentavalent metal. The atomic radii of Al and Bi are 1.82 and 1.63 ˚A, respectively. The large 

mismatch in their physical properties makes this alloy interesting to study theoretically. 

 

Figure 7: Energy of mixing as a function of x for BixAl1−x liquid binary alloys (a) breakdown details at T=1187 

K, (b) Temperature dependence (after Abbas et al. [25]). 

Figure 7(a) illustrates the breakdown details of the energy of mixing at T =1187 K at which some 

experimental data [79] for ∆F are available in the literature. The HS contribution to the energy of 

mixing is negative for the whole concentration range as is found for AlxIn1−x liquid binary alloys. 

But unlike AlxIn1−x, the tail part contribution, ∆Ftail, of BixAl1−x alloys is positive for all 



MICROSCOPIC ORIGIN OF IMMISCIBILITY AND SEGREGATION ... 17  

concentrations with a maximum near equiatomic concentration. The volume dependent part, ∆Fvol, 

in this case, is positive but the magnitudes are much lower than that of ∆Ftail. The electron gas 

contribution, ∆Feg, is nearly zero as for AlxIn1−x. The combined effect of all contributions to the free 

energy, however, agrees well with the experimental results at T = 1173 K available in the literature 

[79]. 

Figure 7(b) shows the energy of mixing for BixAl1−x liquid binary alloys for different temperatures. 

It appears that the alloy exhibits a complete miscibility at 1350 K, and immiscibility for all 

concentrations at 1050 K. But at T = 1290 K, ∆F shows a partial positivity with concavity downward 

near x = 0.15. Further decrease of temperature gradually enhances the concentration gap. As the 

concavity downward (or positivity) of ∆F manifests onset of segregation, one can conclude that the 

predicted critical concentration is xc = 0.15, and critical temperature Tc = 1290 K, while the 

corresponding experimental values are xc = 0.19 [82] and Tc = 1310 [82,83]. 

 

Figure 8: Energy of mixing as a function of x for BixZn1−x liquid binary alloys (a) breakdown details at T=873 

K, (b) Temperature dependence (after Kasem et al. [24]. 

(d) ZnxBi1−x liquid binary alloys: 

Figure 8(a) shows the free energy of mixing for liquid ZnxBi1−x alloys at 873 K [24]. ∆Fhs is negative 

for ZnxBi1−x liquid binary alloys for the whole range of concentration, this trend is similar to that of 

the previous alloys, and having the smallest values relative to the other components for each 

concentration. In this case ∆F is asymmetric in nature where the minimum value is found to be 

around x = 0.6 which is located in the Bi rich alloys. ∆Ftail and ∆Fvol contributions are positive for 

the full range of concentrations, but ∆Ftail shows the larger values than that of ∆Fvol. ∆Feg 

contribution is nearly zero as other segregating alloys under consideration of [21] this review article. 

The total energy of mixing, however, matches well with corresponding experimental data [79]. 

Temperature dependence of ∆F are illustrated in figure 8(b) It is noticed that at T =773 K and higher 

temperatures ∆F is negative for all concentrations. This nature indicates that the alloy is completely 

miscible in the regime of the above thermodynamic states. But at a lower temperature T = 673 K, 

∆F becomes positive i.e., concave downward for some concentrations and negative for others. When 

temperature is lowered further miscibility gap increases gradually as previous systems and cover the 

whole concentration range at 550 K. From figure it appears that the critical concentration is xc = 0.9 
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and the critical temperature Tc = 773 K. The experimental value for xc is 0.83 [16,17], the critical 

concentration found theoretically by Stroud [36] and Karlhauber et al [84] (from quasi lattice theory) 

was xc=0.75 and 0.87, respectively. Experimental critical temperatures are 856 K [16] and 878 K 

[17], and a theoretical study shows 438 K [36]. 

(e) FexCu1−x liquid binary alloys: 

 

Figure 9: Energy of mixing as a function of x for FexCu1−x liquid binary alloys (a) breakdown details at T=1823 

K, (b) Temperature dependence (After Faruk et al. [22]). 

Figure 9(a) shows that the HS contribution to the free energy of mixing for FexCu1−x is negative for 

all concentrations at T = 1823 K [22]. Here the tail part contribution to the energy of mixing is 

negative for all concentrations unlike other segregating alloys. The volume dependent term ∆Fvol is 

positive for the whole concentration range, and the electron gas contribution ∆Feg is almost zero as 

for all others discussed above. The total energy of mixing obtained summing all four contributions 

is negative for all concentrations and the agreement with available measured data [79] is fairly good. 

At T = 1823 K the alloys remain miscible across the full concentration range. As temperature is 

lowered to 100 K, ∆F becomes partially positive around equiatomic concentration where the 

concavity is downward, and the other part of energy of mixing remains negative with upward 

concavity. The critical temperature thus found was Tc = 1750K and the critical concentration found 

was xc = 0.5. The experimental values reported by different authors for xc are 0.56 [13], 0.538 [14] 

and 0.538 [15], and the corresponding experimental data for Tc are 1696, 1704 K and 1694 K, 

respectively. 

(f) CoxCu1−x liquid binary alloys: 

In this case the behavior of various contributions to ∆F is found to be similar to that of FexCu1−x 

[22]. But, in the immiscible state ∆F shows (Figure 10) an asymmetric feature with a value of critical 

concentration xc = 0.58 and critical temperature Tc = 1650 K. The corresponding experimental values 

are xc = 0.53 and Tc = 1547 K [12]. 

Bhuiyan and coworkers carefully investigated why ∆F varies with temperature. They have found 

that ∆Fhs and ∆Ftail are sensitive to T and are mostly responsible for the variation. While ∆Fvol and 

∆Feg are not sensitive to T at all. The sensitivity arises, in this case, due to the alteration of σ and 

consequently ghs(r), with the change of T. 
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Figure 10: Temperature dependence of energy of mixing as a function of x for CuxCo1−x liquid binary alloys 

(after Faruk et al. [22]). 

 

Figure 11: Temperature dependence of enthalpy of mixing as a function of x for BixAl1−x liquid binary alloys 

(after Fysol et al. [25]). 

 

4.3 Enthalpy of mixing 

(a) BixAl1−x liquid binary alloys: 

The enthalpy of mixing, ∆H, are used as a probe to study the critical properties of BixAl1−x liquid 

binary alloys. Figure 11 demonstrates that calculated values of enthalpy of mixing agree in an 

excellent way with available experimental data for miscible alloys at 1187 K [79]. However, figure 

also show that the trends of ∆H as a function of concentration is just opposite like a mirror reflection 

to that of free energy of mixing discussed above. That is at 1350 K ∆H is positive, and at 1050 K it 

is negative for the full concentration range, while at the same thermodynamic states ∆F shows 

negative and positive values, respectively. Figure also shows that, at about 1290 K, ∆H exhibits 

negative (i.e., concave upward) at low values of x and positive (i.e., concave downward) for the rest. 

That means segregation of the alloy begins at 1290 K which is exactly same as found from ∆F [25]. 
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But in the case of enthalpy of mixing the critical concentration is found to be somewhat smaller than 

predicted by the energy of mixing [25]. 

4.4 Entropy of mixing 

It is interesting to see how another static magnitude the entropy of mixing describes the critical 

properties of segregation for different alloys. 

(a) ZnxBi1−x liquid binary alloys 

 

Figure 12: Entropy of mixing as a function of x for BixZn1−x liquid binary alloys; (a) breakdown details, (b) 

temperature dependence (after Kasem et al. [24]). 

Figure 12(a) shows the breakdown details of different contributions to the total entropy of mixing 

calculated by Kasem et al. [24]. It is seen from figure that at T = 873 K, ∆Shs is negative up to x ≤ 

0.8 and then becomes positive. ∆Sgas is negative in the concentration interval 0.1 < x < 0.8, and 

positive beyond it. Contribution of HSD mismatch term, ∆Sσ, is almost zero across the whole range 

of concentration. The tail part contribution, ∆Stail, is found to be positive for the full concentration 

range. However, the combined effect of these contributions that is the total entropy of mixing is 

positive for all concentrations and, the agreement between theory and experiment is very good up to 

x = 0.7, and fairly good for x > 0.7 [79]. 

Figure 12(b) shows the temperature dependence of entropy of mixing for ZnxBi1−x liquid binary 

alloys [24]. We note here that negativity of ∆S (i.e., upward concavity) is an indication of 

segregation. Figure also shows that the critical temperature and critical concentration are Tc = 773 

K and xc = 0.9, respectively. These values are found to be same as that found from the energy of 

mixing [24]. 

 

(b) BixAl1−x liquid binary alloys 

Figure 13 shows entropy of mixing for BixAl1−x liquid binary alloys calculated by Fysol et al. [25]. 

At T = 1350 K, ∆S is positive for all concentrations and at T = 1050 K it is negative for the whole 

range of concentration. For temperatures in between the entropy of mixing is partly positive and 

partly negative. Fysol et al. [25] theoretically found the values xc = 0.1 and Tc = 1290 K for critical 

concentration and critical temperature, respectively. Here the value of Tc is the same as that found 

from ∆F [25] but xc is somewhat lower in this case. 
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Figure 13: Temperature dependence of entropy of mixing as a function of x for BixAl1−x liquid binary alloys 

(after Fysol et al. [25]). 

4. CONCLUDING REMARKS 

Looking at figures of free energy of mixing for AlxIn1−x, FexCu1−x, CuxCo1−x, ZnxBi1−x, and BixAl1−x 

liquid binary alloys one can easily find that the HS contribution ∆Fhs is always negative for all 

concentrations and temperatures. This means that, HS liquid alone cannot describe segregation for 

binary alloys. This finding agrees with that of Libowitz and Rowlinson [40]. However, ∆Fvol 

becomes positive for the whole range of concentration and dominates other contributions in the case 

of FexCu1−x, CuxCo1−x, and AlxIn1−x liquid binary alloys; this feature directly favors the segregation 

for these alloys. The contribution of the tail part of the pair potential, ∆Ftail, becomes positive for the 

full concentration range for ZnxBi1−x, and BixAl1−x liquid binary alloys and negative for others. The 

electron gas contribution ∆Feg is nearly zero for all systems and for any thermodynamic state 

characterized by temperature. Energy of mixing for hard sphere liquid and the tail part contribution 

are very sensitive to temperature unlike ∆Fvol and ∆Feg. In the case of free energy ∆Fhs and ∆Ftail 

increases with increasing temperature, as a result total energy of mixing becomes concave downward 

which manifests immiscibility of the alloy. The values of the critical temperatures and critical 

concentrations for different alloys are illustrated in Table 3. 

Table: Critical temperature and critical concentrations for different segregating alloys. 

 

Systems 

xc 

(Theo.) 

 

(Expt.) 

 

(Theo.) 

Tc (K) 

(Expt.) 

 

Others (Theo.) 

AlIn 0.5 0.5, 0.34 1160 1155, 1150, 1145 - 

FeCu 0.5 0.56, 0.538 1750 1696,1704,1694 - 

CuCo 0.58 0.53 1650 15473 - 

ZnBi 0.9 0.83 773 856, 878 438 

BiAl 0.15 0.19 1290 1310 - 

Understanding of the segregating behavior of liquid binary alloys from the microscopic theory for 

transport properties has just begun. Some interesting features exhibited by the coefficient of 

viscosity and diffusion coefficient as a function of concentration appears to be spectacular [25]. One 

of the features is the sharp bending in the η vs x (or D vs x) profile around the critical concentration. 

Competition between the thermal excitation of ions and the variation of density with temperature is 

another one. In this case, for T < Tc, effects of atomic excitation dominate in determining the 
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dynamics whereas this situation reverses for T > Tc, that is the effect of density variation with 

temperatures dominates the excitation effects. The third interesting feature is the existence of a kind 

of scaling behavior (ηc  η)  (Tc  T )β with β = 1.08, near the critical temperature. These novel features 

showed by some segregating liquid binary alloys demand further research to understand the dynamic 

effects in segregating alloys. 

APPENDIX 

The softness parameter ai used in the calculation are determined by fitting experimental S(q) at small 

q (see Fig.12). 

 

Figure 14: Determination of ai from the best fit of S(q); line theory, closed dots experiment.64) For AlIn (left) 

(after Faruk and Bhuiyan [21] and for BiZn (right) (after Kasem et al. [24]). 
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